کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1147671 957783 2011 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian feature selection for classification with possibly large number of classes
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Bayesian feature selection for classification with possibly large number of classes
چکیده انگلیسی

In what follows, we introduce two Bayesian models for feature selection in high-dimensional data, specifically designed for the purpose of classification. We use two approaches to the problem: one which discards the components which have “almost constant” values (Model 1) and another which retains the components for which variations in-between the groups are larger than those within the groups (Model 2). We assume that p⪢np⪢n, i.e. the number of components p is much larger than the number of samples n, and that only few of those p components are useful for subsequent classification. We show that particular cases of the above two models recover familiar variance or ANOVA-based component selection. When one has only two classes and features are a priori independent, Model 2 reduces to the Feature Annealed Independence Rule (FAIR) introduced by Fan and Fan (2008) and can be viewed as a natural generalization of FAIR to the case of L>2L>2 classes. The performance of the methodology is studies via simulations and using a biological dataset of animal communication signals comprising 43 groups of electric signals recorded from tropical South American electric knife fishes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 141, Issue 9, September 2011, Pages 3256–3266
نویسندگان
, , ,