کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1155856 958777 2010 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sample path Large Deviations and optimal importance sampling for stochastic volatility models
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Sample path Large Deviations and optimal importance sampling for stochastic volatility models
چکیده انگلیسی

Sample path Large Deviation Principles (LDP) of the Freidlin–Wentzell type are derived for a class of diffusions, which govern the price dynamics in common stochastic volatility models from Mathematical Finance. LDP are obtained by relaxing the non-degeneracy requirement on the diffusion matrix in the standard theory of Freidlin and Wentzell. As an application, a sample path LDP is proved for the price process in the Heston stochastic volatility model.Using the sample path LDP for the Heston model, the problem is considered of selecting an importance sampling change of drift, for both the price and volatility, which minimize the variance of Monte Carlo estimators for path-dependent option prices. An asymptotically optimal change of drift is identified as a solution to a two-dimensional variational problem. The case of the arithmetic average Asian put option is solved in detail.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Stochastic Processes and their Applications - Volume 120, Issue 1, January 2010, Pages 66–83
نویسندگان
,