کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1188019 | 963479 | 2010 | 7 صفحه PDF | دانلود رایگان |

The conformational changes and rheological properties of soluble sarcoplasmic proteins isolated from striped catfish (Pangasius hypophthalmus), treated at various pHs (2–12), were investigated. Isoelectric point of striped catfish sarcoplasmic proteins was determined to be pH 5. SDS–PAGE of sarcoplasmic proteins treated at various pHs, showed molecular masses ranging from 11 to 97 kDa. Most sarcoplasmic proteins, regardless of treated pHs, showed a molecular mass of 43 kDa. A decrease in total sulfhydryl content was observed when the pH was shifted away from 6, indicating disulfide formation at pH lower and higher than 6. Gradual increases of S0-ANS and S0-PRODAN were observed as pH increased from 6 to 12, indicating the unfolding of sarcoplasmic proteins during alkaline extraction. DSC thermograms of sarcoplasmic proteins treated at pH 5–9 exhibited an exothermic transition peak, probably due to disulfide bond formation, and/or hydrophobic interactions, which was highly related to the onset temperature of G′ rising. Gel network formation of sarcoplasmic proteins did not take place at extreme pHs (<4 or >9) where proteins were highly charged while the viscoelastic properties of sarcoplasmic proteins were observed at pH 5.5–9. The highest G′ value at 90 °C was observed at pH 5.5 and 8 (P ⩽ 0.05). The gel point, a temperature at which G′ = G″, increased to higher temperature as pH was shifted away from 7.
Journal: Food Chemistry - Volume 121, Issue 4, 15 August 2010, Pages 1046–1052