کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1230572 1495240 2014 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dendrophthoe falcata (L.f) Ettingsh (Neem mistletoe): A potent bioresource to fabricate silver nanoparticles for anticancer effect against human breast cancer cells (MCF-7)
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Dendrophthoe falcata (L.f) Ettingsh (Neem mistletoe): A potent bioresource to fabricate silver nanoparticles for anticancer effect against human breast cancer cells (MCF-7)
چکیده انگلیسی


• Eco-friendly fabrication of colloidal AgNPs with narrow size range using leaf extract of D. falcata.
• Physio-chemical characterization of fabricated AgNPs through exclusive instrumentation.
• Invitro anticancer effect of fabricated AgNPs against human breast carcinoma cells (MCF-7).

Fabrication of metal nano scale particles through environmentally acceptable greener route has been focused with much interest in the present scenario. In this study aqueous leaf extract of mistletoe Dendrophthoe falcata (L.f) Ettingsh was successfully employed as a reducing and stabilizing agent to fabricate nanosilver particles (AgNPs) for biomedical applications. Various reactions conditions such as temperature, pH, concentration of metal ion, incubation time and stoichiometric proportion of the reaction mixture were optimized to attain narrow size range particles with maximum synthesis rate. Fabricated crystalline AgNPs with spherical structure (5–45 nm) were characterized with UV–Visible spectroscopy, Field emission scanning electron microscope (FESEM), High resolution transmission electron microscope (HRTEM) and Selected area diffraction pattern (SEAD). Further the fabricated AgNPs were studied for their stability and surface chemistry through Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray spectroscopy (EDAX) and inductively coupled plasma optical emission spectroscopy (ICP-OES). Moreover, fabricated AgNPs and aqueous leaf extract were assessed for their cytotoxicity effect against human breast carcinoma cell line (MCF-7). It is concluded that colloidal AgNPs can be developed as an imminent candidature for cancer therapy.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy - Volume 128, 15 July 2014, Pages 285–290
نویسندگان
, , , ,