کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1230617 | 1495240 | 2014 | 9 صفحه PDF | دانلود رایگان |

• Conformational analysis is done and seventeen possible conformations are reported.
• IR, Raman spectra and NBO analysis were reported.
• The wavenumbers are calculated theoretically using Gaussian09 software.
• The wavenumbers are assigned using PED analysis.
• The geometrical parameters are in agreement with that of similar compounds.
The conformational behavior and structural stability of (2E)-3-phenylprop-2-enoic anhydride were investigated by using density functional theory. Seventeen possible stable conformations of the title compound were determined and verified with their calculated vibrational frequencies being all positive. The optimized molecular structure, vibrational wavenumbers, corresponding vibrational assignments of (2E)-3-phenylprop-2-enoic anhydride have been investigated experimentally and theoretically using Gaussian09 software package. Potential energy distribution of normal modes vibrations was done using GAR2PED program. The HOMO and LUMO analysis are used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The calculated first hyperpolarizability of the title compound is 12 × 10−30 esu and is 92.31 times that of the standard NLO material urea and the title compound is an attractive object for future studies of nonlinear optical properties. MEP was performed by the DFT method and the predicted infrared intensities and Raman activities have also been reported.
Figure optionsDownload as PowerPoint slide
Journal: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy - Volume 128, 15 July 2014, Pages 638–646