کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1233792 | 1495257 | 2013 | 6 صفحه PDF | دانلود رایگان |

• For AuNPs’s catalysis on luminol CL system, aggregation was an important factor.
• The enhanced effect of aggregated AuNPs was closely related to the sizes of AuNPs.
• More than one factor influence CL system when reducing group organics exist.
• Aggregation induced enhancement was the most key effect in 2.6 nm AuNPs CL system.
• Aggregated AuNPs’s enhancement for CL system is due to electronegativity decrease.
Some organic compounds containing groups of OH, NH2, or SH, which could induce the aggregation of gold nanoparticles (AuNPs), were observed to enhance effectively the luminol–H2O2–2.6 nm AuNPs CL system. It was found that the aggregation of AuNPs was an important effect factor for the catalytic activity of AuNPs on luminol CL system. The aggregated AuNPs could effectively enhance luminol CL signal compared with the dispersed one. The enhanced effect was closely related to the sizes of AuNPs. Among the studied AuNPs with seven sizes, 2.6 nm AuNPs had the greatest enhancement effect on luminol CL system after its aggregation. The CL enhancement mechanism was investigated, and the marked enhancement of aggregated 2.6 nm AuNPs for luminol CL system was supposed to originate from the decrease of AuNPs’ surface negative charge density compared to its dispersed state. For the luminol–H2O2–2.6 nm AuNPs CL system in the presence of organic compounds containing groups of OH, NH2, or SH, more than one factor played the role in influencing the CL intensity. It was found that the enhanced effect of aggregated 2.6 nm AuNPs induced by such organic compounds was much more significant than the inhibition effect of reducing groups of OH, NH2, or SH, which made it applicable for the determination of this kind of compounds.
Figure optionsDownload as PowerPoint slide
Journal: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy - Volume 111, July 2013, Pages 1–6