کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1251916 | 1496320 | 2011 | 9 صفحه PDF | دانلود رایگان |

Genistein (5,7,4′-trihydroxyisoflavone) the common soy beans isoflavone has attracted scientific interest due to its antioxidant, estrogenic, antiangiogenic and aniticancer activities. The aim of the present study was to investigate the interaction of genistein with biological (erythrocyte) and model membranes (dimyristoyl- and dipalmitoylphosphatidylcholine). Using Laurdan and Prodan as fluorescent probes, we demonstrated phase behavior and membrane fluidity changes induced by genistein. ESR spectroscopy revealed alterations caused by genistein in membrane domains structure and mobility of spin probes with free radicals located at different depths of membrane. The method of ESR spectra decomposition and computer simulation of the recorded spectra were used in order to visualize domain coexistence by GHOST condensation method. Fluorescence and ESR spectroscopy experiments performed at different temperatures enabled us to observe the effect of isoflavone on phospholipid bilayers in either gel or liquid crystalline phase. It was concluded that genistein preferentially intercalated into lipid headgroup region, to some extent into polar–apolar interface and only in minimal degree into hydrophobic core of the membrane. According to our best knowledge this is the first study on modification of domain structure of membranes by genistein.
► Interaction of isoflavone genistein with model and natural membranes was studied.
► Fluorescence and ESR spectroscopy with spectra simulation method were used.
► Membrane domain coexistence was visualized by GHOST condensation method.
► Genistein affects mostly headgroup region and partially polar–apolar interface.
► Genistein modifies domain structure of membranes.
Journal: Chemistry and Physics of Lipids - Volume 164, Issue 4, May 2011, Pages 283–291