کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1272369 1497481 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Energy and exergy analyses of a solar driven Mg–Cl hybrid thermochemical cycle for co-production of power and hydrogen
ترجمه فارسی عنوان
تجزیه و تحلیل انرژی و اکسرژی از چرخه ترمو شیمایی هیبرید خورشیدی رانده شده برای تولید مشترک قدرت و هیدروژن
کلمات کلیدی
تولید هیدروژن، چرخه منیزیم کلرید، انرژی خورشیدی، راندمان اگزرژی، انرژی
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
چکیده انگلیسی


• A solar energy based clean hydrogen production system is proposed.
• Reactor requirements of the hybrid–thermochemical cycle is determined.
• Component based irreversibilities are comparatively presented.
• Heat requirement of hydrolysis reactor is provided by solar field.
• Overall system energy and exergy efficiencies are evaluated.

Analysis and performance assessment of a solar driven hydrogen production plant running on an Mg–Cl cycle, are conducted through energy and exergy methods. The proposed system consists of (a) a concentrating solar power cycle with thermal energy storage, (b) a steam power plant with reheating and regeneration, and (c) a hybrid thermochemical Mg–Cl hydrogen production cycle. The results show that higher steam to magnesium molar ratios are required for full yield of reactants at the hydrolysis step. This ratio even increases at low temperatures, although lowering the highest temperatures appears to be more favorable for linking such a cycle to lower temperature energy sources. Reducing the maximum cycle temperature decreases the plant energy and exergy efficiencies and may cause some undesirable reactions and effects. The overall system energy and exergy efficiencies are found to be 18.8% and 19.9%, respectively, by considering a solar heat input. These efficiencies are improved to 26.9% and 40.7% when the heat absorbed by the molten salt is considered and used as a main energy input to the system. The highest exergy destruction rate occurs in the solar field which accounts for 79% of total exergy destruction of the integrated system.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Hydrogen Energy - Volume 39, Issue 28, 23 September 2014, Pages 15330–15341
نویسندگان
, ,