کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1272547 | 1497596 | 2010 | 12 صفحه PDF | دانلود رایگان |

The catalytic hydrogen production from hog manure using supercritical water gasification and partial oxidation was investigated in a batch reactor at a temperature of 500 °C, and pressure of 28 MPa using several metallic catalysts. Hog manure was characterized by a total and soluble chemical oxygen demand (TCOD, SCOD) of 57,000 and 28,000 mg/L, total and volatile suspended solids (TSS, VSS) of 25,000, 19,000, and ammonia of 2400 mg/L, respectively. The order of H2 production was the following: Pd/AC > Ru/Al2O3 > Ru/AC > AC > NaOH, and the order of COD reduction efficiency was as follows: NaOH > Ru/AC > AC > Ru/Al2O3 > Pd/AC. The behavior of the volatile fatty acids (VFAs), ethanol, methanol, ammonia, H2S, and sulfate was investigated experimentally and discussed. A 35% reduction in the H2 and CH4 yields was observed in the sequential gasification partial oxidation (oxidant at an 80% of theoretical requirement) experiments compared to the gasification experiments (catalyst only). Moreover, this reduction in gas yields was coincided with a 45% reduction in the liquid effluent chemical oxygen demand (COD), 60% reduction of the ammonia concentration in the liquid effluent, and 20% reduction in the H2S concentration in the effluent gas.
Journal: International Journal of Hydrogen Energy - Volume 35, Issue 21, November 2010, Pages 11756–11767