کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1273838 1497632 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Continuous biohydrogen production using cheese whey: Improving the hydrogen production rate
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Continuous biohydrogen production using cheese whey: Improving the hydrogen production rate
چکیده انگلیسی

Due to the renewed interest in finding sustainable fuels or energy carriers, biohydrogen (Bio-H2) from biomass is a promising alternative. Fermentative Bio-H2 production was studied in a continuous stirred tank reactor (CSTR) operated during 65.6 d with cheese whey (CW) as substrate. Three hydraulic retention times (HRTs) were tested (10, 6 and 4 h) and the highest volumetric hydrogen production rate (VHPR) was attained with HRT of 6 h. Therefore, four organic loading rates (OLRs) at a fixed HRT of 6 h were tested thereafter, being: 92.4, 115.5, 138.6 and 184.4 g lactose/L/d. The highest VHPR (46.61 mmol H2/L/h) and hydrogen molar yield (HMY) of 2.8 mol H2/mol lactose were found at an OLR of 138.6 g lactose/L/d; a sharp fall in VHPR occurred at an OLR of 184.4 g lactose/L/d. Butyric, propionic and acetic acids were the main soluble metabolites found, with butyric-to-acetic ratios ranging from 1.0 to 2.4. Bacterial community was identified by partial sequence analysis of the 16S rRNA and polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE). The results showed that at HRT of 10 h and 6 h were dominated by the Clostridium genus. The VHPR attained in this study is the highest reported value for a CSTR system using CW as substrate with anaerobic sludge as inoculum and represents a 33-fold increase compared to a previous study. Thus, it was demonstrated that continuous fermentative Bio-H2 production from CW can be significantly enhanced by an appropriate selection of parameters such as HRT and OLR. Enhancements in VHPR are significant because it is a critical parameter to determine the full-scale practical application of fermentation technologies that will be used for sustainable and clean energy generation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Hydrogen Energy - Volume 34, Issue 10, May 2009, Pages 4296–4304
نویسندگان
, , , , ,