کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
12751 814 2005 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures
چکیده انگلیسی

The use of bone cement to treat vertebral compression fractures in a percutaneous manner requires placement of the cement under fluoroscopic image guidance. To enhance visualization of the flow during injection and to monitor and prevent leakage beyond the confines of the vertebral body, the orthopedic community has described increasing the amount of radiopacifier in the bone cement. In this study, static tensile and compressive testing, as well as fully reversed fatigue testing, was performed on three PMMA-based bone cements. Cements tested were Simplex®P with 10% barium sulfate (Stryker Orthopedics, Mahwah, NJ) which served as a control; Simplex®P with 36% barium sulfate prepared according to the clinical recommendation of Theodorou et al.; and KyphX HV-R with 30% barium sulfate (Kyphon Inc., Sunnyvale, CA). Static tensile and compressive testing was performed in accordance with ASTM F451-99a. Fatigue testing was conducted in accordance with ASTM F2118-01a under fully reversed, ±10-, ±15-, and ±20-MPa stress ranges. Survival analysis was performed using three-parameter Weibull modeling techniques. KyphX HV-R was found to have comparable static mechanical properties and significantly greater fatigue life than either of the two control materials evaluated in the present study. The static tensile and compressive strengths for all three PMMA-based bone cements were found to be an order of magnitude greater than the expected stress levels within a treated vertebral body. The static and fatigue testing data collected in this study indicate that bone cement can be designed with barium sulfate levels sufficiently high to permit fluoroscopic visualization while retaining the overall mechanical profile of a conventional bone cement under typical in vivo loading conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 26, Issue 17, June 2005, Pages 3699–3712
نویسندگان
, , , ,