کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1276151 1497545 2012 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
SDC/Na2CO3 nanocomposite: New freeze drying based synthesis and application as electrolyte in low-temperature solid oxide fuel cells
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
SDC/Na2CO3 nanocomposite: New freeze drying based synthesis and application as electrolyte in low-temperature solid oxide fuel cells
چکیده انگلیسی

A key issue to develop low-temperature solid oxide fuel cells (LTSOFCs) is to develop new electrolyte materials with enhanced ionic conductivity. Recently, SDC/Na2CO3 nanocomposite, as a proton and oxide co-ion conductor, has been developed as promising electrolyte candidates for LTSOFCs, where Na2CO3 as the secondary phase performs several crucial functions. However, it’s difficult to control the homogeneity of Na2CO3 phase in the composite by the current methods for composite fabrication. In this study, we report a new freeze drying technique to fabricate SDC/Na2CO3 nanocomposites with different content of Na2CO3. Structural and morphological study confirmed that the homogeneity of both SDC and Na2CO3 phases in the nanocomposite is well controlled by the freeze drying technique. The effect of Na2CO3 content on proton and oxygen ion conductivities of SDC-carbonate samples were investigated by the four-probe d.c. measurement. Proton conductivity transformation around 350 °C has been observed for all the SDC/Na2CO3 nanocomposites due to the glass transition of amorphous Na2CO3 phase, and the proton conductivity is dependent on Na2CO3 content. While oxygen ion conductivity deceases with the increasing of Na2CO3 volume fraction in the nanocomposite. Finally, SOFCs were fabricated using SDC/Na2CO3 nanocomposite samples and tested for electrochemical performances. The excellent performance of SOFCs using SDC/Na2CO3 nanocomposite electrolyte verifies that nanocomposite approach is an effective way to fabricate electrolyte with enhanced ionic conductivity for LTSOFCs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Hydrogen Energy - Volume 37, Issue 24, December 2012, Pages 19380–19387
نویسندگان
, , , , ,