کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1276171 1497489 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hydrogen production by steam reforming of ethanol over P123-assisted mesoporous Ni–Al2O3–ZrO2 xerogel catalysts
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Hydrogen production by steam reforming of ethanol over P123-assisted mesoporous Ni–Al2O3–ZrO2 xerogel catalysts
چکیده انگلیسی


• Hydrogen was produced by steam reforming of ethanol.
• Ni–Al2O3–ZrO2 (X-NAZ) catalysts were prepared at different P123 concentration (X).
• An optimal P123 concentration was required for maximum production of hydrogen.
• Hydrogen yield increased with increasing nickel surface area.

A series of mesoporous Ni–Al2O3–ZrO2 xerogel (denoted as X-NAZ) catalysts were prepared by a P123-assisted epoxide-driven sol–gel method under different P123 concentration (X, mM), and they were applied to the hydrogen production by steam reforming of ethanol. The effect of P123 concentration on the physicochemical properties and catalytic activities of X-NAZ catalysts was investigated. All the catalysts retained a mesoporous structure. Pore volume of the catalysts increased with increasing P123 concentration. Ni surface area and ethanol adsorption capacity of X-NAZ catalysts exhibited volcano-shaped trends with respect to P123 concentration. The trend of hydrogen yield was well matched with the trend of Ni surface area and ethanol adsorption capacity. Thus, Ni surface area and ethanol adsorption capacity of the catalysts served as important factors determining the catalytic performance. Among the catalysts tested, 12-NAZ catalyst with the highest Ni surface area and the largest ethanol adsorption capacity showed the best catalytic performance in the steam reforming of ethanol. In conclusion, an optimal P123 concentration was required for maximum production of hydrogen in the steam reforming of ethanol over X-NAZ catalysts.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Hydrogen Energy - Volume 39, Issue 20, 3 July 2014, Pages 10445–10453
نویسندگان
, , , , , , , ,