کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1277845 | 1497592 | 2011 | 8 صفحه PDF | دانلود رایگان |

For a solid oxide fuel cell (SOFC) integrated into a micro gas turbine (MGT) hybrid power system, SOFC operating temperature and turbine inlet temperature are the key parameters, which affect the performance of the hybrid system. Thus, a least squares support vector machine (LS-SVM) identification model based on an improved particle swarm optimization (PSO) algorithm is proposed to describe the nonlinear temperature dynamic properties of the SOFC/MGT hybrid system in this paper. During the process of modeling, an improved PSO algorithm is employed to optimize the parameters of the LS-SVM. In order to obtain the training and prediction data to identify the modified LS-SVM model, a SOFC/MGT physical model is established via Simulink toolbox of MATLAB6.5. Compared to the conventional BP neural network and the standard LS-SVM, the simulation results show that the modified LS-SVM model can efficiently reflect the temperature response of the SOFC/MGT hybrid system.
Journal: International Journal of Hydrogen Energy - Volume 36, Issue 1, January 2011, Pages 885–892