کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1280289 1497599 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hydrogen adsorption over Zeolite-like MOF materials modified by ion exchange
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Hydrogen adsorption over Zeolite-like MOF materials modified by ion exchange
چکیده انگلیسی

Novel porous Zeolite-like metal-organic framework (ZMOF) materials with Rho and Sod topologies are promising adsorbents for hydrogen storage due to their high surface area and, more importantly, to their capacity of being ion-exchanged, potentially changing their affinity for hydrogen. In this work, we have successfully synthesized both Rho and SodZMOF materials, optimizing experimental conditions for scaling-up the procedure already published to produce grams of material. The resultant materials were alkaline-cation-exchanged, widely characterized and finally tested as hydrogen adsorbents.RhoZMOF is converted into an amorphous phase during some of the ion-exchange processes, whereas SodZMOF, whose ion-exchange capacity has not been investigated so far, always maintains its topology for any tested exchange cation and conditions. Additionally, thermogravimetric analyses and thermal treatments followed by in-situ powder X-ray diffraction analysis have evidenced a significantly higher thermal stability of both as-prepared and ion-exchanged SodZMOF materials in comparison to their Rho-structured homologues. Moreover, the thermal stability of the cation-exchanged ZMOF samples improves when methanol is the ion-exchange solvent rather than the reported ethanol–water mixture. Nitrogen and hydrogen adsorption isotherms at 77 K suggested that alkali-exchanged materials have lower affinity for hydrogen than the as-prepared samples compensated by imidazolium ion; however, due to the smaller size of Na+ or Li+ cations, their lower affinity is easily compensated by the inherent increase in surface area and pore volume as exchange degree increases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Hydrogen Energy - Volume 35, Issue 18, September 2010, Pages 9916–9923
نویسندگان
, , , ,