کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1281038 1497615 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Redox cycling of CuFe2O4 supported on ZrO2 and CeO2 for two-step methane reforming/water splitting
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Redox cycling of CuFe2O4 supported on ZrO2 and CeO2 for two-step methane reforming/water splitting
چکیده انگلیسی

CuFe2O4 supported on ZrO2 and CeO2 for two-step methane reforming was evaluated to determine if it could enhance the reactivity, CO selectivity and thermal stability of CuFe2O4. Two-step methane reforming consists of a syngas production step and a water splitting step. CuFe2O4 supported on ZrO2 and CeO2 was prepared using an aerial oxidation method. Non-isothermal methane reduction was carried out on TGA to compare the reactivity of CuFe2O4/ZrO2 and CuFe2O4/CeO2. In addition, a syngas production step was performed at 900 °C and water splitting was conducted at 800 °C alternatively five times to compare the methane conversion, CO selectivity, cycle ability and hydrogen production by water splitting in a fixed bed reactor. If the 1st syngas production step results are excluded due to over-oxidation, CuFe2O4/ZrO2 and CuFe2O4/CeO2 showed approximately 74.0–82.8% and 60.3–87.5% methane conversion, respectively, and 44.0–47.8% and 65.2–81.5% CO selectivity, respectively. Using CeO2 and ZrO2 as supports effectively improved the reactivity and methane conversion compared to CuFe2O4. CuFe2O4/ZrO2 showed high methane conversion due to the high phase stability and thermal stability of ZrO2 but the selectivity was not improved. After 5 successive cycles, the CeFeO3 phase was found on CuFe2O4/CeO2. Furthermore, methane conversion, CO selectivity and the amounts of hydrogen production of CuFe2O4/CeO2 increased with increasing number of cycles. Additional test up to the 11th cycle on CuFe2O4/CeO2 revealed that CeO2 is a better support that ZnO2 in terms of the reactivity and CO selectivity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Hydrogen Energy - Volume 35, Issue 2, January 2010, Pages 568–576
نویسندگان
, , , , , , , ,