کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1281202 1497636 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Electrochemical hydrogen storage characteristics of Mg1.5Al0.5−xZrxNi (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) alloys synthesized by mechanical alloying
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Electrochemical hydrogen storage characteristics of Mg1.5Al0.5−xZrxNi (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) alloys synthesized by mechanical alloying
چکیده انگلیسی

Mg1.5Al0.5−xZrxNi (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) type alloys were synthesized by mechanical alloying and their electrochemical hydrogen storage characteristics were investigated. X-ray diffraction studies showed that Zr facilitated the amorphization of Mg2Ni phase, while Al retarded the amorphization of this phase. The increase in the Zr content was observed to bring about significant improvement in the discharge capacities at all the ball milling durations. The stepwise replacement of Al with Zr, however, caused considerable reduction in the initial discharge capacities of the alloys. Despite the adverse effect of Al on the initial discharge capacity, it prevented the rapid degradation of Mg2Ni phase with the charge/discharge cycles. When the beneficial effects of Zr and Al were combined by designing Mg1.5Al0.5−xZrxNi type alloys, Mg1.5Al0.2Zr0.3Ni alloy was found to have the highest discharge capacity at almost all the charge/discharge cycle steps. Among the obtained capacity retaining rates, Mg1.5Al0.4Zr0.1Ni alloy had the best performance. This alloy has kept at least 50% of its initial discharge capacity at 20th cycle. The analysis by the electrochemical impedance spectroscopy revealed that the charge transfer resistances of Al-rich alloys were low at high depth of discharges. This observation was attributed to the formation of the porous unstable Mg(OH)2 layer due to the intercalation of Al2O3 layers, which have the high rate of solubility in strongly basic solutions, and thus the exposition of the underlying electrocatalytically active Ni sites.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Hydrogen Energy - Volume 34, Issue 6, March 2009, Pages 2692–2700
نویسندگان
, , , , ,