کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1284275 1497986 2014 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Artificial neural network model of a short stack solid oxide fuel cell based on experimental data
ترجمه فارسی عنوان
مدل شبکه عصبی مصنوعی یک سلول سوختی اکسید جامد پشته کوتاه بر اساس داده های تجربی
کلمات کلیدی
شبکه های عصبی مصنوعی، سلول سوختی اکسید جامد، آزمایش، مدل سازی
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
چکیده انگلیسی


• Artificial neural network model for a SOFC trained by experimental data.
• Finding the optimized structure of the multi-layer back-propagation neural network.
• Experimental set up for current, voltage and temperature measurements of the SOFC stack.
• Prediction of the temperature profile and voltage of the SOFC.

Solid oxide fuel cells (SOFCs) are complex systems in which electrical conduction, heat transfer, gas phase mass transport, chemical reactions and ionic conduction take place simultaneously and are tightly coupled. Mathematical models based on conservation laws have been shown to be slow and because of some parameter estimation for physical, chemical and electrochemical properties they have less accuracy. ANN models are powerful tools that bring simplicity and real-time response to SOFC modeling. Depending on the quality of the training data, ANN models can also show greater accuracy than CFD models. In this study ANN modeling of a short stack SOFC is considered. Training data are extracted and filtered from measurements on a dedicated test set-up. Given the fuel flow and composition, air flow, oven temperature and current, the model can predict the voltage and temperature profile of the cell. An optimized structure for the network is selected as: 5–11–6 for a 5 input, 6 output network with 11 hidden neurons. Prediction results of the ANN model deviate 0.2% concerning average relative error compared to the measurements.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Power Sources - Volume 246, 15 January 2014, Pages 581–586
نویسندگان
, ,