کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1284598 1498033 2012 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Design of thermal self supported 700 W class, solid oxide fuel cell module using, LSGM thin film micro tubular cells
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Design of thermal self supported 700 W class, solid oxide fuel cell module using, LSGM thin film micro tubular cells
چکیده انگلیسی

Thermal self supporting SOFC module was studied under various conditions for high energy conversion efficiency. In order to achieve high energy conversion efficiency even under partial load condition, SOFC module and system was designed to operate at intermediate temperature by using LaGaO3 based oxide film electrolyte. Heat loss, Qheatloss is requested to be diminished as much as possible by decreasing heat radiation and exhaust gas heat from module. SOFC module with 700 W was successfully demonstrated in thermal self-supported state under various conditions. SOFC module can be thermally self-supported within a limited temperature range (841–886 K) but energy conversion efficiency decreases with decreasing current density, because of the limited fuel and air utilization from heat value requested for thermal self-support. In this study, the energy conversion efficiency of the 700 W module shows ca. 47% low heat value (LHV) at 700 W output power with fuel utilization of 75% and even at 250 W partial load, efficiency is ca. 30% achieved. For achieving the high energy conversion efficiency in partial load mode and self-thermal supported condition, decrease in heat loss, in particular, 400 W is strongly requested.


► SOFC module was designed thermodynamically using micro tubular cell.
► SOFC module efficiency is ca.47% with 700 W power and ca.30% with 250 W in partial load.
► SOFC module can be thermally self-supported within a limited temperature range (841–886 K).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Power Sources - Volume 199, 1 February 2012, Pages 117–123
نویسندگان
, , ,