کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1286172 973179 2007 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An investigation of water-gas transport processes in the gas-diffusion-layer of a PEM fuel cell by a multiphase multiple-relaxation-time lattice Boltzmann model
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
An investigation of water-gas transport processes in the gas-diffusion-layer of a PEM fuel cell by a multiphase multiple-relaxation-time lattice Boltzmann model
چکیده انگلیسی

In order to study water-gas transport processes in the gas-diffusion-layer (GDL) of a proton exchange membrane (PEM) fuel cell system, a multiphase, multiple-relaxation-time lattice Boltzmann model is presented in this work. The model is based on the mean-field diffuse interface theory and can handle the multiphase flows with large density ratios and various viscosities. By using the standard bounce back boundary condition and an approximate average scheme for the non-slip and wetting boundary walls, respectively, detailed liquid-gas transportation in the GDL, in which exact boundary condition is difficult to be implemented, can be simulated. Unlike most of lattice Boltzmann methods based on the Bhatnagar–Gross–Krook collision operator, the present model shows a viscosity-independent velocity field, which is very important in simulating multiphase flows where various viscosities coexist. We validate our model by simulating a static droplet on a wetting wall and compare with theoretical predictions. Then, we simulate a water-gas flow in the GDL of a PEM fuel cell and investigate the saturation-dependent transport properties under different conditions. The results are shown to be qualitatively consistent with the previous numerical and theoretical works.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Power Sources - Volume 172, Issue 2, 25 October 2007, Pages 542–552
نویسندگان
, , , ,