کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1287245 973218 2006 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Transient analysis for the cathode gas diffusion layer of PEM fuel cells
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Transient analysis for the cathode gas diffusion layer of PEM fuel cells
چکیده انگلیسی

A one-dimensional, non-isothermal, two-phase transient model has been developed to study the transient behaviour of water transport in the cathode gas diffusion layer of PEM fuel cells. The effects of four parameters, namely the liquid water saturation at the interface of the gas diffusion layer and flow channels, the proportion of liquid water to all of the water at the interface of the cathode catalyst layer and the gas diffusion layer, the current density, and the contact or wetting angle, on the transient distribution of liquid water saturation in the cathode gas diffusion layer are investigated. Especially, the time needed for liquid water saturation to reach steady state and the liquid water saturation at the interface of the cathode catalyst layer and gas diffusion layer are plotted as functions of the above four parameters. The ranges of water vapour condensation and liquid water evaporation are identified across the thickness of the gas diffusion layer. In addition, the effects of the above four parameters on the steady state distributions of gas phase pressure, water vapour concentration, oxygen concentration and temperature are also presented. It is found that increasing any one of the first three parameters will increase the water saturation at the interface of the catalyst layer and gas diffusion layer, but decrease the time needed for the liquid water saturation to reach steady state. When the liquid water saturation at the interface of the gas diffusion layer and flow channels is high enough (≥0.1), the liquid water saturation at steady state is almost uniformly distributed across the thickness of the gas diffusion layer. It is also found that, under the given initial and boundary conditions in this paper, evaporation takes place within the gas diffusion layer close to the channel side and is the major process for water phase change at low current density (<2000 A m−2); condensation occurs close to the catalyst layer side within the gas diffusion layer and dominates the phase change at high current density (>5000 A m−2). For hydrophilic gas diffusion layers, both the time needed for liquid water saturation to reach steady state and the water saturation at the interface of the catalyst layer and gas diffusion layer will increase when the contact angle increases; but for hydrophobic gas diffusion layers, both of them decrease when the contact angle increases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Power Sources - Volume 159, Issue 2, 22 September 2006, Pages 928–942
نویسندگان
, , , ,