کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1289381 | 973297 | 2010 | 10 صفحه PDF | دانلود رایگان |

A highly efficient integrated energy conversion system is built based on a methane catalytic decomposition reactor (MCDR) together with a direct carbon fuel cell (DCFC) and an internal reforming solid oxide fuel cell (IRSOFC). In the MCDR, methane is decomposed to pure carbon and hydrogen. Carbon is used as the fuel of DCFC to generate power and produce pure carbon dioxide. The hydrogen and unconverted methane are used as the fuel in the IRSOFC. A gas turbine cycle is also used to produce more power output from the thermal energy generated in the IRSOFC. The output performance and efficiency of both the DCFC and IRSOFC are investigated and compared by development of exact models of them. It is found that this system has a unique loading flexibility due to the good high-loading property of DCFC and the good low loading property of IRSOFC. The effects of temperature, pressure, current densities, and methane conversion on the performance of the fuel cells and the system are discussed. The CO2 emission reduction is effective, up to 80%, can be reduced with the proposed system.
Journal: Journal of Power Sources - Volume 195, Issue 19, 1 October 2010, Pages 6539–6548