کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1289568 | 973304 | 2011 | 6 صفحه PDF | دانلود رایگان |

The ability of electron transfer from microbe cell to anode electrode plays a key role in microbial fuel cell (MFC). This study explores a new approach to improve the MFC performance and electron transfer rate through addition of Tween 80. Results demonstrate that, for an air-cathode MFC operating on 1 g L−1 glucose, when the addition of Tween 80 increases from 0 to 80 mg L−1, the maximum power density increases from 21.5 to 187 W m−3 (0.6–5.2 W m−2), the corresponding current density increases from 1.8 to 17 A m−2, and the resistance of MFC decreases from 27.0 to 5.7 Ω. Electrochemical impedance spectroscopy (EIS) analysis suggests that the improvement of overall performance of the MFC can be attributed to the addition of Tween 80. The high power density achieved here may be due to the increase of permeability of cell membranes by addition of Tween 80, which reduces the electron transfer resistance through the cell membrane and increases the electron transfer rate and number, consequently enhances the current and power output. A promising way of utilizing surfactant to improve energy generation of MFC is demonstrated.
Journal: Journal of Power Sources - Volume 196, Issue 3, 1 February 2011, Pages 899–904