کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1292155 | 973383 | 2007 | 10 صفحه PDF | دانلود رایگان |

Chemical hydrides have been identified as a potential medium for on-board hydrogen storage, one of the most challenging technical barriers to the prospective transition from gasoline to hydrogen-powered vehicles. Systematic study of the feasibility of the sodium borohydride systems, and chemical-hydride systems more generally, requires detailed kinetic studies of the reaction for use in reactor modeling and system-level experiments. This work reports an experimental study of the kinetics of sodium borohydride hydrolysis with a Ru-on-carbon catalyst and a Langmuir-Hinshelwood kinetic model developed based on experimental data. The model assumes that the reaction consists of two important steps: the equilibrated adsorption of sodium borohydride on the surface of the catalyst and the reaction of the adsorbed species. The model successfully captures both the reaction's zero-order behavior at low temperatures and the first-order behavior at higher temperatures. Reaction rate constants at different temperatures are determined from the experimental data, and the activation energy is found to be 66.9 kJ mol−1 from an Arrhenius plot.
Journal: Journal of Power Sources - Volume 164, Issue 2, 10 February 2007, Pages 772–781