کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1292200 1497916 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enhanced electrocatalytic activity of electrodeposited F-doped SnO2/Cu2S electrodes for quantum dot-sensitized solar cells
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Enhanced electrocatalytic activity of electrodeposited F-doped SnO2/Cu2S electrodes for quantum dot-sensitized solar cells
چکیده انگلیسی


• Electrodeposited F-doped SnO2 (FTO)/Cu2S films are fabricated.
• They consist of vertical-standing nanosheets with small nanosheets in between.
• They exhibit the facilitated ion transport and large surface area.
• They are used as the counter electrode of the quantum dot-sensitized solar cells.
• Significantly enhanced cell efficiency of 4.58% was achieved.

Copper sulfide (Cu2S) films were deposited on F-doped SnO2 (FTO) substrates via the electrodeposition (ED) of copper (Cu) nanoparticles followed by sulfurization. The Cu nanoparticles were deposited on FTO substrates for various ED times ranging from 10 to 30 min at a constant −0.4 V. The FTO/Cu films consisted of flower-like nanoparticles comprised of randomly-clustering nanoflakes. The Cu nanoparticles electrodeposited for 10 min (FTO/Cu (10 min)) were dispersed sparsely over the FTO substrate, whereas the FTO/Cu (20 and 30 min) provided increased coverage. Unlike FTO/Cu2S (10 min), the FTO/Cu2S (20 and 30 min) consisted of vertically-standing large Cu2S nanosheets with numerous small nanosheets in between. This was attributed to the sufficient number of Cu seed nanoflakes, which not only facilitate ion transport of the redox couple but also increased the surface area, leading to significantly enhanced electrocatalytic activity. The quantum dot-sensitized solar cell (QD-SSC) with FTO/Cu2S (20 min) exhibited a significantly improved cell efficiency of 4.58%, compared to those with Pt and FTO/Cu2S (10 min). The QD-SSC with the FTO/Cu2S (30 min) showed similar cell efficiency to that with the FTO/Cu2S (20 min), despite the larger surface area because of its amorphous crystallographic structure offsetting the electrocatalytic activity.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Power Sources - Volume 316, 1 June 2016, Pages 53–59
نویسندگان
, , , , , ,