کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1293961 | 973584 | 2010 | 5 صفحه PDF | دانلود رایگان |

An efficient fabrication method for carbon nanotube (CNT)-based electrode with a nanosized Pt catalyst is developed for high efficiency proton-exchange membrane fuel cells (PEMFC). The integrated Pt/CNT layer is prepared by in situ growth of a CNT layer on carbon paper and subsequent direct sputter-deposition of the Pt catalyst. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrate that this Pt/CNT layer consists of a highly porous CNT layer covered by well-dispersed Pt nanodots with a narrow size distribution. Compared with conventional gas-diffusion layer assisted electrodes, the CNT-based electrode with a Pt/CNT layer acting as a combined gas-diffusion layer and catalyst layer shows pronounced improvement in polarization tests. A high maximum power density of 595 mW cm−2 is observed for a low Pt loading of 0.04 mg cm−2 at the cathode.
Journal: Journal of Power Sources - Volume 195, Issue 1, 1 January 2010, Pages 155–159