کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1306537 | 975094 | 2011 | 9 صفحه PDF | دانلود رایگان |

A series of new copper(II) complexes of four sterically hindering linear tridentate 3N ligands N′-ethyl-N′-(pyrid-2-ylmethyl)-N,N-dimethylethylenediamine (L1), N′-benzyl-N′-(pyrid-2-ylmethyl)-N,N-dimethylethylenediamine (L2), N′-benzyl-N′-(6-methylpyrid-2-yl-methyl)-N,N-dimethylethylenediamine (L3) and N′-benzyl-N′-(quinol-2-ylmethyl)-N,N-dimethylethylenediamine (L4) have been isolated and examined as catalysts for olefin aziridination. The complexes [Cu(L1)Cl2]·CH3OH 1, [Cu(L2)Cl2]·CH3OH 2, [Cu(L3)Cl2]·0.5 H2O 3 and [Cu(L4)Cl2] 4 have been structurally characterized by X-ray crystallography. In all of them copper(II) adopts a slightly distorted square pyramidal geometry as inferred from the values of trigonality index (τ) for them (τ: 1, 0.02; 2, 0.01; 3, 0.07; 4, 0.01). Electronic and EPR spectral studies reveal that the complexes retain square-based geometry in solution also. The complexes undergo quasireversible Cu(II)/Cu(I) redox behavior (E1/2, −0.272 − −0.454 V) in acetonitrile solution. The ability of the complexes to mediate nitrene transfer from PhINTs and chloramine-T trihydrate to olefins to form N-tosylaziridines has been studied. The complexes 3 and 4 catalyze the aziridination of styrene very slowly yielding above 80% of the desired product. They also catalyze the aziridination of the less reactive olefins like cyclooctene and n-hexene but with lower yields (30–50%). In contrast to these two complexes, 1 and 2 fail to catalyze the aziridination of olefins in the presence of both the nitrene sources. All these observations have been rationalized based on the Cu(II)/Cu(I) redox potentials of the catalysts.
The complexes [Cu(L3)Cl2] 3 and [Cu(L4)Cl2] 4 mediate nitrene transfer from PhINTs and chloramine-T trihydrate to styrene to yield above 80% of the N-tosylaziridine. In contrast, [Cu(L1)Cl2] 1 and [Cu(L2)Cl2] 2 fail to catalyze the aziridination. These observations have been rationalized based on the Cu(II)/Cu(I) redox potentials of the catalysts.Figure optionsDownload as PowerPoint slide
Journal: Inorganica Chimica Acta - Volume 365, Issue 1, 15 January 2011, Pages 143–151