کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1308158 1499167 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Synthesis of homo- and heterobimetallic NiII–MII (M = Fe, Co, Ni, Zn) complexes based on an unsymmetric ligand framework: Structures, spectroscopic features, and redox properties
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی معدنی
پیش نمایش صفحه اول مقاله
Synthesis of homo- and heterobimetallic NiII–MII (M = Fe, Co, Ni, Zn) complexes based on an unsymmetric ligand framework: Structures, spectroscopic features, and redox properties
چکیده انگلیسی


• An unsymmetric binucleating ligand was used to prepare a series of NiII–MII complexes (M = Fe, Co, Ni, Zn).
• Each complex was characterized with X-ray crystallography, UV–vis absorption spectroscopy, and electrochemical methods.
• The complexes serve as structural mimics of Ni-containing active sites in metalloenzymes.

Several homo- and heterobimetallic NiII–MII complexes (MII = Fe, Co, Ni, Zn) supported by an unsymmetric polydentate ligand (L13−) are reported (L13− is the trianion of 2-[bis(2-hydroxy-3,5-tert-butylphenyl)aminomethyl]-4-methyl-6-[(2-pyridylmethyl)iminomethyl]phenol). The L13− chelate provides two distinct coordination environments: a planar tridentate {N2O} site (A) and a tetradentate {NO3} site (B). Reaction of L13− with equimolar amounts of NiII and MII salts provides bimetallic complexes in which the NiII ion exclusively occupies the tetragonal A-site and the MII ion is found in the tripodal B-site. X-ray crystal structures revealed that the two metal centers are bridged by the central phenolate donor of L13− and an anionic X-ligand, where X = μ-1,1-acetate, hydroxide, or methoxide. The metal ions are separated by 3.0–3.1 Å in the MAMBX structures, where MA and MB indicate the ion located in the A and B sites, respectively, and X represents the second bridging ligand. Analysis of magnetic data and UV–Vis–NIR spectra indicate that, in all cases, the two metal ions adopt high-spin states in solution. The NiAII centers undergo one-electron reduction at −1.17 V vs. SCE, while the NiII and CoII ions in the phenolate-rich B-site are reduced at lower potentials. Significantly, the NiAII center possesses three open or labile coordination sites in a meridional geometry, which are generally occupied by solvent-derived ligands in the crystal structures. The NiMBX complexes serve as structural mimics of heterometallic Ni-containing sites in biology, such as the C-cluster of carbon monoxide dehydrogenase (CODH).

The geometric and electronic structures of a series of NiII–MII complexes (M = Fe, Co, Ni, Zn) featuring an unsymmetric chelate were characterized with crystallographic, spectroscopic, and electrochemical methods.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Inorganica Chimica Acta - Volume 421, 1 September 2014, Pages 559–567
نویسندگان
, , ,