کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1316799 | 976482 | 2006 | 8 صفحه PDF | دانلود رایگان |

The pH- and time-dependent reactions of the antitumor drug cisplatin, cis-[PtCl2(NH3)2], with the methionine- and histidine-containing pentapeptides Ac-Met-Gly-His-Gly-Gly-OH, Ac-Met-Gly-Gly-His-Gly-OH and Ac-Gly-Met-Gly-His-Gly-OH (Gly = glycyl, Met = l-methionyl, His = l-histidyl) at 313 K have been investigated by high performance liquid chromatography, mass spectrometry and nuclear magnetic resonance. Cisplatin mediates a rapid “downstream” hydrolytic cleavage of the Met-Gly amide bond in weakly acid solution (pH ⩽5) for all three peptides, leading to release of H-Gly-His-Gly-Gly-OH, H-Gly-Gly-His-Gly-OH and H-Gly-His-Gly-OH, respectively, and formation of κ2S,NM chelate complexes of the methionine-containing residuals Ac-Met-OH or Ac-Gly-Met-OH. An alternative reaction pathway affords tridentate κ3S,NM,N(imidazole) macrochelates of the original pentapeptide following ammine loss. The downstream cleavage pathway is competitive with the likewise cisplatin-mediated upstream cleavage of the Ac-Gly linkage in the pentapeptide Ac-Gly-Met-Gly-His-Gly-OH. This leads to formation of both the κ3S,NM,NG1 complex of H-Gly-Met-Gly-His-Gly-OH due to upstream cleavage and the analogous tridentate complex for H-Gly-Met-OH due to initial downstream loss of H-Gly-His-Gly-OH followed by upstream loss of acetic acid. As downstream cleavage is not observed for Ac-(Gly)2-Met-(Gly)2-OH under similar conditions, it may be concluded that rapid histidine imidazole substitution of the ammine ligand in trans-position to an anchoring methionine S atom must assist hydrolytic cleavage of the Met-Gly amide bond.
Journal: Journal of Inorganic Biochemistry - Volume 100, Issue 9, September 2006, Pages 1506–1513