کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1317839 976589 2012 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Coordination chemistry of copper proteins: How nature handles a toxic cargo for essential function
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی معدنی
پیش نمایش صفحه اول مقاله
Coordination chemistry of copper proteins: How nature handles a toxic cargo for essential function
چکیده انگلیسی

Biological copper is coordinated predominantly by just three ligand types: the side chains of histidine, cysteine, and methionine, with of course some exceptions. The arrangement of these components, however, is fascinating. The diversity provided by just these three ligands provides choices of nitrogen vs. sulfur, neutral vs. charged, hydrophilic vs. hydrophobic, susceptibility to oxidation, and degree of pH-sensitivity. In this review we examine how the total number of ligands, their spatial arrangement and solvent accessibility, the various combinations of imidazole, thiolate, and thioether donors, all work together to provide binding sites that either enable copper to carry out a function, or safely transport it in a way that prevents toxic reactivity. We separate copper proteins into two broad classes, those that utilize the metal as a cofactor, or those that traffic the metal. Enzymes and proteins that utilize copper as a cofactor use high affinity sites of high coordination numbers of 4–5 that prevent loss of the metal during redox cycling. Copper trafficking proteins, on the other hand, promote metal transfer either by having low affinity binding sites with moderate coordination number ~ 4, or by having lower coordinate binding sites of 2–3 ligands that bind with high affinity. Both strategies retain the metal but allow transfer under appropriate conditions. Analysis of studies from our own lab on model peptides, combined with those from other labs, raises an interesting hypothesis that various methionine/histidine/cysteine combinations provide organisms with dynamic, multifunctional domains on copper trafficking proteins that facilitate copper transfer under different extracellular, subcellular, and tissue-specific scenarios of pH, redox environment, and presence of other copper carriers or target proteins.

Copper is essential for a majority of life forms, but also potentially toxic. This review explores the metal -ligand coordination environments of proteins that utilize copper as a cofactor compared to those that manage copper as cargo in distribution networks that supply sufficient but not toxic levels.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Inorganic Biochemistry - Volume 107, Issue 1, February 2012, Pages 129–143
نویسندگان
, ,