کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1326751 | 977442 | 2007 | 12 صفحه PDF | دانلود رایگان |

The low-temperature reaction of [CrCl3(thf)3] with LiC6H3Cl2-2,6 yields the organochromium(III) compound [Li(thf)4][CrIII(C6H3Cl2-2,6)4] (1) in 48% yield. The homoleptic, anionic species [CrIII(C6H3Cl2-2,6)4]− is electrochemically related to the neutral one [CrIV(C6H3Cl2-2,6)4] (2) through a reversible one-electron exchange process (E1/2 = 0.16 V, ΔEp = 0.09 V, ipa/ipc = 1.18). Compound 2 was isolated in 74% yield by chemical oxidation of 1 with [N(C6H4Br-4)3][SbCl6]. Attempts to prepare the salt [NBu4][CrIII(C6Cl5)4] (4) by direct arylation of [CrCl3(thf)3] with LiC6Cl5 in the presence of [NBu4]Br gave the organochromium(II) salt [NBu4]2[CrII(C6Cl5)4] (3) instead, as the result of a reduction process. The salt [NBu4][CrIII(C6Cl5)4] (4) was cleanly prepared by comproportionation of 3 and [CrIV(C6Cl5)4]. The reaction of [MoCl4(dme)] with LiC6Cl5 in Et2O solution proceeded with oxidation of the metal center to give the paramagnetic (S = 1/2), five-coordinate salt [Li(thf)4][MoVO(C6Cl5)4] (5). The crystal and molecular structures of 1 and 2 have been established by X-ray diffraction methods. The magnetic properties of 1 and 4 (S = 3/2) as well as those of 2 (S = 1) have been established by EPR spectroscopy as well as by ac and dc magnetization measurements.
The highly unsaturated (10 valence electrons) organochromium(IV) derivative [CrIV(C6H3Cl2-2,6)4] (2) has a slightly elongated tetrahedral structure. This compound is prepared by chemical oxidation of the organochromate(III) salt [Li(thf)4][CrIII(C6H3Cl2-2,6)4] (1). This [CrIVR4]/[CrIIIR4]− couple is electrochemically related by a one-electron exchange process (E1/2 = 0.16 V).Figure optionsDownload as PowerPoint slide
Journal: Journal of Organometallic Chemistry - Volume 692, Issue 15, 1 July 2007, Pages 3236–3247