کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1338514 979668 2007 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multiple one-electron oxidation and reduction of trinuclear bis(2,4-pentanedionato)ruthenium complexes with substituted diquinoxalino[2,3-a:2′,3′-c]phenazine ligands
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی معدنی
پیش نمایش صفحه اول مقاله
Multiple one-electron oxidation and reduction of trinuclear bis(2,4-pentanedionato)ruthenium complexes with substituted diquinoxalino[2,3-a:2′,3′-c]phenazine ligands
چکیده انگلیسی

The complexes (μ3-L1/L2)[Ru(acac)2]3, acac− = 2,4-pentanedionato, L1 = 2,3,8,9,14,15-hexachlorodiquinoxalino[2,3-a:2′,3′-c]phenazine and L2 = 2,3,8,9,14,15- hexamethyldiquinoxalino[2,3-a:2′,3′-c]phenazine, undergo stepwise one-electron oxidation involving a total of three electrons and stepwise one-electron reduction with three (L2) or four electrons (L1). All reversibly accessible states were characterized by UV–Vis–NIR spectroelectrochemistry. Oxidation leads to mixed-valent intermediates {(μ3-L)[Ru(acac)2]3}+ and {(μ3-L)[Ru(acac)2]3}2+ of which the RuIIIRuIIRuII combinations exhibit higher comproportionation constants Kc than the RuIIIRuIIIRuII states – in contrast to a previous report for the unsubstituted parent systems {(μ3-L3)[Ru(acac)2]3}+/2+, L3 = diquinoxalino[2,3-a:2′,3′-c]phenazine. No conspicuous inter-valence charge transfer absorptions were observed for the mixed-valent intermediates in the visible to near-infrared regions. The monocations and monoanions were characterized by EPR spectroscopy, revealing rhombic ruthenium(III) type signals for the former. Electron addition produces ruthenium(II) complexes of the reduced forms of the ligands L, a high resolution EPR spectrum with 14N and 35,37Cl hyperfine coupling and negligible g anisotropy was found for {(μ3-L1)[Ru(acac)2]3}−. DFT calculations of (μ3-L1)[Ru(acac)2]3 confirm several ligand-centered low-lying unoccupied MOs for reduction and several metal-based high-lying occupied MOs for electron withdrawal, resulting in low-energy metal-to-ligand charge transfer (MLCT) transitions.

Three reversible oxidation steps and at least three reversible reduction processes were found for the title complexes. Analysis via EPR and UV–Vis–NIR spectroelectrochemistry revealed metal-centered oxidation to form mixed-valent intermediates without conspicuous IVCT absorptions in the infrared. Reduction occurs on the bridging ligands with very little participation from ruthenium.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Polyhedron - Volume 26, Issue 13, 6 August 2007, Pages 3409–3418
نویسندگان
, , , , , , ,