کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
13429088 | 1842331 | 2020 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Online collaborative filtering with local and global consistency
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Collaborative Filtering (CF) is one of the most popular technologies used in online recommendation systems. Most of the existing CF studies focus on the offline algorithms, a major drawback of these algorithms is the lack of ability to use the latest user feedbacks to update the learned model in realtime, due to the high cost of the offline training procedure. In this work, we propose Logo, an online CF algorithm. Our proposed method is based on a hierarchical generative model, with which, we derive a set of local and global consistency constraints for the prediction targets, and eventually obtain the design of the learning algorithm. We conduct comprehensive experiments to evaluate the proposed algorithm, the results show that: (1) Under the online setting, our algorithm achieves notably better prediction results than the benchmark algorithms; (2) Under the offline setting, our algorithm attains comparable accurate prediction results with the best performed competitors; (3) In all the experiments, our algorithm performs tens or even hundreds of times faster than the comparison algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 506, January 2020, Pages 366-382
Journal: Information Sciences - Volume 506, January 2020, Pages 366-382
نویسندگان
Xiao-Yu Huang, Bing Liang, Wubin Li,