کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1358758 981361 2012 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Synthesis of purine N9-[2-hydroxy-3-O-(phosphonomethoxy)propyl] derivatives and their side-chain modified analogs as potential antimalarial agents
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آلی
پیش نمایش صفحه اول مقاله
Synthesis of purine N9-[2-hydroxy-3-O-(phosphonomethoxy)propyl] derivatives and their side-chain modified analogs as potential antimalarial agents
چکیده انگلیسی

6-Oxopurine acyclic nucleoside phosphonates (ANPs) have been shown to be potent inhibitors of hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT), a key enzyme of the purine salvage pathway in human malarial parasites. These compounds also exhibit antimalarial activity against parasites grown in culture. Here, a new series of ANPs, hypoxanthine and guanine 9-[2-hydroxy-3-(phosphonomethoxy)propyl] derivatives with different chemical substitutions in the 2′-position of the aliphatic chain were prepared and tested as inhibitors of Plasmodium falciparum (Pf) HGXPRT, Plasmodium vivax (Pv) HGPRT and human HGPRT. The attachment of an hydroxyl group to this position and the movement of the oxygen by one atom distal from N9 in the purine ring compared with 2-(phosphonoethoxy)ethyl hypoxanthine (PEEHx) and 2-(phosphonoethoxy)ethyl guanine (PEEG) changes the affinity and selectivity for human HGPRT, PfHGXPRT and PvHGPRT. This is attributed to the differences in the three-dimensional structure of these inhibitors which affects their mode of binding. A novel observation is that these molecules are not always strictly competitive with 5-phospho-α-d-ribosyl-1-pyrophosphate. 9-[2-Hydroxy-3-(phosphonomethoxy)propyl]hypoxanthine (iso-HPMP-Hx) is a very weak inhibitor of human HGPRT but remains a good inhibitor of both the parasite enzymes with Ki values of 2 μM and 5 μM for PfHGXPRT and PvHGPRT, respectively. The addition of pyrophosphate to the assay decreased the Ki values for the parasite enzymes by sixfold. This suggests that the covalent attachment of a second group to the ANPs mimicking pyrophosphate and occupying its binding pocket could increase the affinity for these enzymes.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bioorganic & Medicinal Chemistry - Volume 20, Issue 3, 1 February 2012, Pages 1222–1230
نویسندگان
, , , , , ,