کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1360379 | 981434 | 2008 | 9 صفحه PDF | دانلود رایگان |

Metal selective fluorescent peptide probes (dansyl-Cys-X-Gly-His-X-Gly-Glu-NH2, X = Pro or Gly) were developed by synthesizing peptides containing His, Cys, and Glu residues with Pro-Gly sequence to stabilize a turn structure and Gly-Gly sequence to adopt a random coil. The probe containing two Gly-Gly sequences exhibited marked selectivity only for Cu2+ over 13 metal ions including competitive transition and Group I and II metal ions under physiological buffer condition. In contrast, the probe containing double Pro-Gly sequences showed high selectivity for Zn2+. The peptide probe containing one Pro-Gly sequence exhibited selectivity for Zn2+ and Cu2+. CD spectra indicated that the secondary structure of the probes played an important role in the selective metal monitoring and a pre-organized secondary structure is not required for the selective detection of Cu2+ ion, but is required for the detection of Zn2+. We investigated and characterized the binding affinity, binding stoichiometry, reversibility, and pH sensitivity of the peptide probes.
Figure optionsDownload as PowerPoint slide
Journal: Bioorganic & Medicinal Chemistry - Volume 16, Issue 18, 15 September 2008, Pages 8501–8509