کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1361460 | 981463 | 2008 | 11 صفحه PDF | دانلود رایگان |

DOTA (1,4,7,10-tetraazacyclodocecane-N,N′,N″,N‴-tetraacetic acid), which forms extremely stable complexes with a large number of metal ions, is one of the most important and most commonly used chelators for in vivo applications such as cancer diagnosis and therapy. However, many of the published synthesis protocols for DOTA derivatives are complicated and give the products in low yields. Here we report improved synthesis routes for tris-tBu-DOTA, tris-benzyl-DOTA, and thiol-DOTA, and also describe the synthesis of the novel compound tris-4-nitro-benzyl-DOTA. In addition, we determined the applicability of the DOTA derivatives tris-tBu-DOTA, thiol-DOTA, tris-benzyl-DOTA, tris-4-nitrobenzyl-DOTA, tris-allyl-DOTA, DOTA-PFP-ester, and DOTA-PNP-ester for multimerization reactions using amino functionalized PAMAM dendrimers of different sizes. Thiol-DOTA was found to be the best compound for efficient reactions with dendritic scaffolds generating highly homogeneous DOTA-multimers. This DOTA derivative could be quantitatively conjugated to a 128-mer dendrimer.
Improved synthesis protocols for several DOTA derivatives. The utility of these and other DOTA derivatives for multimerization reactions is studied with PAMAM dendrimers.Figure optionsDownload as PowerPoint slide
Journal: Bioorganic & Medicinal Chemistry - Volume 16, Issue 5, 1 March 2008, Pages 2606–2616