کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1390862 983152 2007 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Kinetics of hydrolysis of chitin/chitosan oligomers in concentrated hydrochloric acid
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آلی
پیش نمایش صفحه اول مقاله
Kinetics of hydrolysis of chitin/chitosan oligomers in concentrated hydrochloric acid
چکیده انگلیسی

The kinetics of hydrolysis in concentrated hydrochloric acid (12.07 M) of the fully N-acetylated chitin tetramer (GlcNAc4) and the fully N-deacetylated chitosan tetramer (GlcN4) were followed by determining the amounts of the lower DP oligomers as a function of time. A theoretical model was developed to simulate the kinetics of hydrolysis of the three different glycosidic linkages in the tetramers. The model uses two different rate constants for the hydrolysis of the glycosidic bonds in the oligomers, assuming that the glycosidic bond next to one of the end residues are hydrolysed faster than the two other glycosidic linkages. The two rate constants were estimated by fitting model data to experimental results. The results show that the hydrolysis of the tetramers is a nonrandom process as the glycosidic bonds next to one of the end residues are hydrolysed 2.5 and 2.0 times faster as compared to the other glycosidic linkages in the fully N-acetylated and fully N-deacetylated tetramer, respectively. From previous results on other oligomers and the reaction mechanism, it is likely that the glycosidic bond that is hydrolysed fastest is the one next to the nonreducing end. The absolute values for the rate constants for the hydrolysis of the glycosidic linkages in GlcNAc4 were found to be 50 times higher as compared to the glycosidic linkages in GlcN4, due to the catalytic role of the N-acetyl group and the presence of the positively charged amino-group on the N-deacetylated sugar residue.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Carbohydrate Research - Volume 342, Issue 8, 11 June 2007, Pages 1055–1062
نویسندگان
, , ,