کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1391561 | 983574 | 2013 | 12 صفحه PDF | دانلود رایگان |

• HBD3 modulates the effects of stimulatory and inhibitory ligands
• HBD3 binds MC1R and MC4R via spatially distinct clusters of positively charged residues
• Ligand-receptor binding interaction aids context-dependent transmembrane signaling
SummaryThe β-defensins are a class of small, cationic proteins first recognized as antimicrobial components of the innate and adaptive immune system. More recently, one of the major β-defensins produced in skin, β-defensin 3, has been discovered to function as a melanocortin receptor ligand in vivo and in vitro, but its biophysical and pharmacological basis of action has been enigmatic. Here, we report functional and biochemical studies focused on human β-defensin 3 (HBD3) and melanocortin receptors 1 and 4. Genetic and pharmacologic studies indicate that HBD3 acts as a neutral melanocortin receptor antagonist capable of blocking the action of either stimulatory agonists such as α-melanocyte stimulating hormone or inhibitory inverse agonists such as Agouti signaling protein (ASIP) and Agouti-related protein (AGRP). A comprehensive structure-function analysis demonstrates that two patches of positively charged residues, located on opposite poles of HBD3 and spatially organized by the compact β-defensin fold, are primarily responsible for high-affinity binding to melanocortin receptors. These findings identify a distinct mode of melanocortin receptor-ligand interactions based primarily on electrostatic complementarity, with implications for designing ligands that target melanocortin and potentially other seven transmembrane receptors.
Graphical AbstractFigure optionsDownload high-quality image (101 K)Download as PowerPoint slide
Journal: - Volume 20, Issue 6, 20 June 2013, Pages 784–795