کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1392290 | 983732 | 2007 | 10 صفحه PDF | دانلود رایگان |

SummaryBis-indolylquinones represent a class of fungal natural products that display antiretroviral, antidiabetes, or cytotoxic bioactivities. Recent advances in Aspergillus genomic mining efforts have led to the discovery of the tdiA-E-gene cluster, which is the first genetic locus dedicated to bis-indolylquinone biosynthesis. We have now genetically and biochemically characterized the enzymes TdiA (bis-indolylquinone synthetase) and TdiD (L-tryptophan:phenylpyruvate aminotransferase), which, together, confer biosynthetic abilities for didemethylasterriquinone D to Aspergillus nidulans. This compound is the universal intermediate for all bis-indolylquinones. In this biochemical study of a bis-indolylquinone synthetase and a fungal natural product transaminase, we present a one-pot chemoenzymatic protocol to generate didemethylasterriquinone D in vitro. As TdiA resembles a nonribosomal peptide synthetase, yet catalyzes carbon-carbon-bond formation, we discuss the implications for peptide synthetase chemistry.
Journal: - Volume 14, Issue 6, 25 June 2007, Pages 635–644