کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1413334 | 1508857 | 2015 | 8 صفحه PDF | دانلود رایگان |
Synthetic diamond materials are currently attracting attention for applications such as thin films supercapacitors or medical implantable electrodes where chemically stable materials featuring high double layer capacitance as well as low electrochemical impedance are sought. Those properties may be reached with high aspect ratio diamond provided that current collection is done efficiently through the diamond layer. In this paper, we introduce a very novel material, namely SPDia™, based on boron-doped diamond grown on a highly porous polypyrrole scaffold prepared by chemical vapour deposition. This composite was first characterised by SEM and Raman spectroscopy to cheque the diamond crystallinity and the structural evolution of the polypyrrole during the CVD process. Then cyclic voltammetry and electrochemical impedance spectroscopy were performed to assess its electrochemical reactivity. It was found to exhibit remarkable properties, that include a large double layer capacitance with values reaching up to 3 mF cm−2 in aqueous LiClO4 and a low electrochemical impedance, thus highly competitive with respect to other nanostructured diamond materials as recently reported.
Journal: Carbon - Volume 90, August 2015, Pages 102–109