کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1415736 | 985934 | 2011 | 8 صفحه PDF | دانلود رایگان |

Graphene oxide nanoplatelets (GONPs) are presented as electrochemical active materials for VO2+/VO2+ and V2+/V3+ redox couples for a vanadium redox flow battery. The structures and electrochemical properties of GONPs treated at different temperatures were investigated by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and cyclic voltammetry. The results indicate that GONPs treated at 50 °C (GONP-50) possess highly hydroxylated and carboxylated groups and exhibit an excellent electrocatalytic activity towards VO2+/VO2+ and V2+/V3+ redox couples, while the pristine graphite only shows a reversible electrocatalytic activity towards VO2+/VO2+, suggesting that the V2+/V3+ redox reaction more strongly depends on the oxygen-containing groups attached on graphite surface than does the VO2+/VO2+. With the increase of treatment temperature, the polarization is reduced significantly. GONPs treated at 120 °C (GNOP-120) exhibit a lower electrochemical polarization than that of GONP-50 because of relatively higher electrical conductivity despite moderate electrocatalytic activity. The diffusion of VO2+ is faster on the surface of GONP-50 than on the pristine graphite and GNOP-120.
Figure optionsDownload as PowerPoint slideResearch highlights
► Graphene oxide nanoplatelets attach with hydroxylated and carboxylated groups.
► Graphene oxide nanoplatelets form a covering on the copper grid, like transparent silk.
► Graphene oxide nanoplatelets electrochemically catalyze the VO2+/VO2+ and V2+/V3+.
Journal: Carbon - Volume 49, Issue 2, February 2011, Pages 693–700