کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1415996 | 985940 | 2009 | 9 صفحه PDF | دانلود رایگان |

The isosteric heat of adsorption in the Henry’s law region is calculated as a function of the pore width for carbon single wall cylindrical nanopores and spherical nanocavities. The maximum isosteric heat of adsorption is obtained for six gas molecules: argon, methane, carbon dioxide, hydrogen, helium, and nitrogen. In addition, the results for cylindrical carbon nanopores are compared with adsorption data on single-wall carbon nanotubes from the literature. We find the pore width where the isosteric heat of adsorption is a maximum for both geometries. The effect of solid–fluid parameters on the pore diameter for the maximum isosteric heat of adsorption is determined for any system described by a Lennard–Jones potential. Constant relationships between the pore diameters for the maximum isosteric heat of adsorption and the specific solid–fluid parameters are found for cylindrical nanopores, spherical nanocavities, and parallel-wall slit-shaped pores. Surface mean curvature has a significant influence on the isosteric heat of adsorption.
Journal: Carbon - Volume 47, Issue 15, December 2009, Pages 3415–3423