کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1417241 | 985966 | 2010 | 12 صفحه PDF | دانلود رایگان |

A highly effective hydroxylated-functionalization of carbon fibres for use as electrodes of all-vanadium redox flow battery (VRFB) was developed. Carbon paper made of carbon fibres was hydroxylated ultrasonically with mixed acids (H2SO4/HNO3, VH2SO4/VHNO3VH2SO4/VHNO3 = 3/1) in a Teflon-lined stainless steel autoclave for different time at 80 °C. The structure, composition, and electrochemical properties of the treated samples for positive and negative electrodes of VRFB were characterized with Fourier transformation infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectrometry, scanning electron microscopy, X-ray diffraction, cyclic voltammetry, electrochemical impedance spectroscopy, and cell charge and discharge tests. The content of hydroxyl group changes from 3.8% for the untreated sample to 14.3% for the carbon paper treated in mixed acids for 10 h. The highly hydroxylated sample shows its high activity toward the redox reactions of V(II)/V(III) and V(IV)/V(V). The VRFB using the carbon paper treated for 8 h as the electrodes exhibits excellent performance under a current density of 10 mA cm−2. The average voltage efficiency reaches 91.3%, and the average energy efficiency reaches 75.1%. The mechanisms for the high hydroxylation of the carbon fibres with the mixed acids and the high activity of the treated sample toward the vanadium redoxs are discussed.
Journal: Carbon - Volume 48, Issue 11, September 2010, Pages 3079–3090