کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1464492 | 989663 | 2011 | 5 صفحه PDF | دانلود رایگان |

NiFe2−xBixO4 (x = 0, 0.1, 0.15) nanopowders were synthesized via sol–gel method. The precursor gels were calcined at 773 K in air for 1 h to obtain the pure nanostructured NiFe2−xBixO4 spinel phase. The crystal structure and magnetic properties of the substituted spinel series of NiFe2−xBixO4 have been investigated by means of 57Fe Mössbauer spectroscopy, transmission electron microscopy and alternating gradient force magnetometry. Mössbauer spectroscopic measurements revealed that Bi3+ cations tend to occupy octahedral positions in the structure of the substituted ferrite, i.e., the crystal-chemical formula of the as-prepared nanoparticles may be written as: (Fe)[NiFe1−xBix]O4 (x = 0, 0.1, 0.15), where parentheses and square brackets enclose cations on sites of tetrahedral and octahedral coordination, respectively. Selective area electron diffraction studies provided evidence that the samples of the NiFe2−xBixO4 series, independently of x, exhibit the cubic spinel structure. The values of the saturation magnetization and the coercive field of NiFe2−xBixO4 nanoparticles were found to decrease with increasing degree of bismuth substitution.
Journal: Ceramics International - Volume 37, Issue 6, August 2011, Pages 1905–1909