کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
146597 | 456373 | 2015 | 9 صفحه PDF | دانلود رایگان |

• A new nanocomposite was designed for co-removal of phosphate and p-nitrophenol from water.
• Nanosized HFOs was incorporated into hypercrosslinked polystyrene to obtain bifunctionality.
• The mechanism for co-adsorption of phosphate and PNP was discussed.
• The exhausted adsorbent could be readily regenerated for continuous runs.
A new nanocomposite adsorbent, HFO-802, was fabricated by incorporating nanosized hydrated ferric oxides (HFOs) inside the hyper-cross-linked polymeric adsorbent NDA802. The co-removal of inorganic and organic pollutants was examined using p-nitrophenol (PNP) and phosphate as the model compounds. Three widely used adsorbents, including powdered activated carbon, macroporous polystyrene adsorbent (XAD-4) and the host adsorbent (NDA802), were tested for comparison. HFO-802 exhibited superior properties when compared to the other adsorbents during the simultaneous removal of phosphate and PNP. These better properties were attributed to the unique structure of HFO-802; i.e., the encapsulated HFO nanoparticles exhibit preferable removal of phosphate through inner-sphere complexation, whereas the host NDA802 captures PNP through micropore filling, π–π interactions, and acid–base interactions. More attractively, the exhausted HFO-802 was amenable to effective regeneration by using an alkaline solution, allowing for repeated use with a constant co-removal efficiency over 10 continuous cycles of operation. The effect of solution pH, contact time and ionic strength on HFO-802 co-removal was determined. The results highlighted a new method to fabricate bifunctional adsorbents for the co-removal of inorganic and organic pollutants by encapsulating metal oxide nanoparticles inside a microporous solid host.
Figure optionsDownload as PowerPoint slide
Journal: Chemical Engineering Journal - Volume 268, 15 May 2015, Pages 399–407