کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1475831 | 991131 | 2010 | 13 صفحه PDF | دانلود رایگان |

The tensile creep and rupture behavior of 2D-woven SiC fiber-reinforced SiC matrix composites with potential for advanced high temperature structural applications was determined in air at 1315 °C. The results are compared to similar SiC/SiC data in the literature in order to understand the underlying creep and rupture mechanisms. Focus was placed on three different near-stoichiometric SiC fiber-types and three SiC-based matrix systems produced by different process routes. In general, the creep and rupture properties of the tested composites were primarily dictated by the creep resistance of the fiber-type, with the Sylramic-iBN fiber typically showing the best behavior. However, the type of matrix did have an effect on the composite creep and rupture lives due to load-sharing differences for the different matrix types and due to stoichiometry in the case of chemical vapor infiltration SiC matrices.
Journal: Journal of the European Ceramic Society - Volume 30, Issue 11, August 2010, Pages 2209–2221