کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1524170 995335 2012 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Structural rearrangement at the yttrium-depleted surface of HCl-processed yttrium aluminosilicate glass for 90Y-microsphere brachytherapy
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد مواد الکترونیکی، نوری و مغناطیسی
پیش نمایش صفحه اول مقاله
Structural rearrangement at the yttrium-depleted surface of HCl-processed yttrium aluminosilicate glass for 90Y-microsphere brachytherapy
چکیده انگلیسی

The design of a process to create yttrium aluminosilicate microspheres with a core–shell structure is of interest in the field of cancer brachytherapy. Glass microspheres with yttrium-depleted shell may indeed reduce the risk of 90Y release into the organism. Here we show – by means of confocal micro-Raman scattering, microfluorescence, X-ray-fluorescence analysis, and IR spectroscopy – that yttrium depletion may be achieved by etching in HCl solution (pH 2) at a rate of 1 μm day−1 in bulk glass and 3 μm day−1 in glass microsphere (35 μm of diameter). Importantly, the spectroscopic results – collected in confocal configuration along the processed layer – indicate a high degree of structural reconstruction of the glass network, with the formation of an interconnected silicate-rich glass that surrounds a core of unmodified yttrium aluminosilicate. We also demonstrate that the process is driven by non-bridging oxygen sites, which regulate the hydroxylation and structural reconstruction of the glass within the Y-depleted layer. The analysis gives also some insight into open fundamental questions about the short-range structure and the chemical stability of this kind of glass, which is also important in photonics and nuclear waste disposal.


► Y-leaching effects in yttrium alumino-silicates are analyzed at the micrometer scale.
► A high degree of structural reconstruction is driven by non-bridging oxygens.
► Core–shell engineered glass microspheres are obtained after Y-leaching in HCl.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials Chemistry and Physics - Volume 133, Issue 1, 15 March 2012, Pages 24–28
نویسندگان
, , , , , , , ,