کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
154814 456866 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: Fractional models for biological reactions
ترجمه فارسی عنوان
یک روش محاسبه کسری برای بهینه سازی پویا سیستم های واکنش پذیر بیولوژیکی. قسمت اول: مدل های جزئی برای واکنش های بیولوژیکی
کلمات کلیدی
محاسبات مکرر، تخمیر فسادزدایی، سینتیک مکرر، واکنش های غیرمعمول
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی


• The dynamics of reactive systems with atypical behavior are represented by FDE.
• Different fermentation processes were represented by the same fractional model.
• A formal fractionalization approach was used to obtain the model of hydrolysis.
• Results show the capabilities of fractional calculus for modeling dynamic systems.

This series of two papers is concerned with both the modeling and the optimization of systems whose governing equations contain fractional derivative operators. In this first work, we show that the dynamics of some reactive systems displaying atypical behavior can be represented by fractional order differential equations. We consider three different instances of fermentation processes and one case of a thermal hydrolysis process. We propose a fractional fermentation model and, based on experimental data, a non-linear fitting approach that includes fractional integration is used to obtain the fractional orders and kinetics parameters. On the other hand, since the ordinary thermal hydrolysis model used as a reference was derived from fundamental principles, a formal fractionalization approach was used in this work to obtain the corresponding fractional model. Results show the feasibility and capabilities of fractional calculus as a tool for modeling dynamic systems in the area of process systems engineering.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Engineering Science - Volume 117, 27 September 2014, Pages 217–228
نویسندگان
, , , ,