کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1558030 999261 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی (عمومی)
پیش نمایش صفحه اول مقاله
Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors
چکیده انگلیسی

Supercapacitors are promising alternative energy storage systems due to their relatively fast rate of energy storage and delivery. We describe a simple and scalable method to fabricate three-dimensional (3D) few-layer graphene/multi-walled carbon nanotube (MWNT) hybrid nanostructures on industrial grade metal foam foils (nickel foam) via a one-step ambient pressure chemical vapor deposition (APCVD) process. The as-grown few-layer graphene/MWNT nanocarbon foams are in the form of a homogeneous and densely packed hierarchical nanostructures and possess a very large surface area of 743 m2 g−1. Symmetrical electrochemical double-layer capacitors (EDLCs) of 3D hybrid hierarchical few-layer graphene/MWNT nanostructures show a high specific capacitance of 286 F g−1 which leads to an energy density of 39.72 Wh kg−1 and a superior power density of up to 154.67 kW kg−1. Moreover, the capacitance retention of 99.34% after 85000 charge–discharge cycles demonstrates the very high stability of the electrode architectures for supercapacitors. These merits enable the innovative 3D hierarchical few-layer graphene/MWNT foam to serve as high performance EDLC electrodes, resulting in energy storage devices with very high stability and power density.

Figure optionsDownload as PowerPoint slideHighlights
► Few-layer graphene/MWNT foam architectures are grown on foamed metal foils.
► The as-grown graphene/MWNT foam architecture possesses a very large surface area.
► Supercapacitors based on this innovative carbon nanostructure foam show superior electrochemical performances.
► Capacitance retention of 99.34% over 85000 charge–discharge cycles demonstrates the very high stability of the novel materials architecture for supercapacitor electrodes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nano Energy - Volume 2, Issue 2, March 2013, Pages 294–303
نویسندگان
, , , , , , , ,