کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1565538 1514206 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
First principle-based AKMC modelling of the formation and medium-term evolution of point defect and solute-rich clusters in a neutron irradiated complex Fe–CuMnNiSiP alloy representative of reactor pressure vessel steels
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی هسته ای و مهندسی
پیش نمایش صفحه اول مقاله
First principle-based AKMC modelling of the formation and medium-term evolution of point defect and solute-rich clusters in a neutron irradiated complex Fe–CuMnNiSiP alloy representative of reactor pressure vessel steels
چکیده انگلیسی

The formation and medium-term evolution of point defect and solute-rich clusters under neutron irradiation have been modelled in a complex Fe–CuMnNiSiP alloy representative of RPV steels, by means of first principle-based atomistic kinetic Monte Carlo simulations. The results obtained reproduce most features observed in available experimental studies, highlighting the very good agreement between both series. According to simulation, solute-rich clusters form and develop via an induced segregation mechanism on either the vacancy or interstitial clusters, and these point defect clusters are efficiently generated only in cascade debris and not Frenkel pair flux. The results have revealed the existence of two distinct populations of clusters with different characteristic features. Solute-rich clusters in the first group are bound essentially to interstitial clusters and they are enriched in Mn mostly, but also Ni to a lesser extent. Over the low dose regime, their density increases in the alloy as a result of the accumulation of highly stable interstitial clusters. In the second group, the solute-rich clusters are merged with vacancy clusters, and they contain mostly Cu and Si, but also substantial amount of Mn and Ni. The formation of a sub-population of pure solute clusters has been observed, which results from annihilation of the low stable vacancy clusters on sinks. The results indicate finally that the Mn content in clusters is up to 50%, Cu, Si, and Ni sharing the other half in more or less equivalent amounts. This composition has not demonstrated any noticeable modification with increasing dose over irradiation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Nuclear Materials - Volume 440, Issues 1–3, September 2013, Pages 143–152
نویسندگان
, , ,